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A novel plankton imager was developed and deployed aboard a profiling mooring in Prince William Sound in 2016–2018. The imager
consisted of a 12-MP camera and a 0.137� telecentric lens, along with darkfield illumination produced by an in-line ring/condenser lens
system. Just under 2.5 � 106 images were collected during 3 years of deployments. A subset of almost 2 � 104 images was manually identified
into 43 unique classes, and a hybrid convolutional neural network classifier was developed and trained to identify the images. Classification
accuracy varied among the different classes, and applying thresholds to the output of the neural network (interpretable as probabilities or
classifier confidence), improved classification accuracy in non-ambiguous groups to between 80% and 100%.
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Introduction
There is a considerable interest in moving marine resource

management away from a single-species approach to a more

mechanistic ecosystem approach (e.g. Friedland et al., 2012), but

that has proved to be challenging in practice given the complexity

and variability of large marine ecosystems. Technologies for mea-

suring physical parameters (temperature and salinity) are mature,

and technologies for measuring biogeochemical parameters (e.g.

nitrate, phosphate) are also now available and reasonably robust

(Johnson et al., 2006). Similarly, the practice of using in situ fluo-

rescence as a proxy for primary producer biomass is well estab-

lished (e.g. Strickland and Parsons, 1972). The assessment of

higher trophic levels, particularly fish stocks, is also mature and

features an array of well-developed methods (e.g. King, 2007).

Zooplankton are the link between primary productivity and fish-

eries, but zooplankton studies have often been sidelined within

ecosystem studies (Mitra et al., 2014) because they are difficult

and expensive to enumerate.

In high latitude ecosystems, secondary producers are mostly

small Eumetazoan zooplankton (Longhurst, 2006). Although the

dominant large grazers are often crustaceans, there is a diversity

of other taxa present: most every phylum within the subkingdom

has a member that may be found in the plankton during at least

part of their life history. Until recently, the assessment of zoo-

plankton was primarily done by collecting them with nets and ex-

amining the resulting samples under a microscope. This method

is time consuming and expensive and destroys fragile taxa but

is required if species-level taxonomic resolution is desired. There

has been much work in recent years on new methods to enumer-

ate zooplankton taxa, both in situ and in manus (reviewed

by Wiebe and Benfield, 2003). One of the more promising meth-

ods has proved to be in situ imagery, which permits the
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discrimination of plankton from abiotic particulates, provides a

level of taxonomic resolution, and sizing of imaged plankton and

particulates (which is useful because biomass, and many physio-

logical rates scale with size).

A number of in situ imagers have been developed, including

traditional camera-based systems such as the Video Plankton

Recorder (Davis et al., 1992), ZOOVIS (Benfield et al., 2003), and

the Scripps Plankton Camera (spc.ucsd.edu). A number of sys-

tems have also been developed that employ shadowgraph imagery

(Samson et al., 2001; Cowen and Guigand, 2008; Ohman et al.,

2019); shadowgraph systems possess a very long depth of field

and consequently permit sampling large volumes of water. The

disadvantage of shadowgraph systems is that only the silhouette

of non-transparent plankton is recovered and only greyscale

images may be collected.

Given the high abundance of zooplankton in situ (order 102–106

individuals l�1), most imaging systems collect many more images

than may be identified manually and there has also been a parallel ef-

fort to develop machine vision techniques to automate the identifica-

tion of those images (Benfield et al., 2007). Early methods included

discriminant analysis (Jeffries et al., 1984), and more recently

Support Vector Machines and Artificial Neural Networks (e.g.

Culverhouse et al., 1996; Hu and Davis, 2005) and Random Forest

(Gorsky et al., 2010) methods have been employed successfully.

With recent advances in computing hardware, most notably

the development of cost-effective massively parallel graphics

processing unit (GPU) based processors, very deep convolutional

neural networks (CNNs) have been developed for solving com-

plex computer vision problems such as image classification

(Krizhevsky et al., 2012). CNNs of varying architecture are now

commonly employed to address the classification of plankton

images from in situ imaging systems (e.g. Cui et al., 2018; Luo

et al., 2018; Schröder et al., 2018; Bochinski et al., 2019; Cheng

et al., 2019). Many studies have focused on smaller phyto- and

microzooplankton images based on the publicly available WHOI

database (Orenstein et al., 2015; Sosik et al., 2015) and report ac-

curacies in the range of 86–96% (e.g. Lee et al., 2016; Cui et al.,

2018; Liu et al., 2018). Among larger zooplankton, Luo et al.

(2018) used a CNN to identify shadowgraph images to a classifi-

cation accuracy of order of 90%, if rare difficult-to-classify groups

were omitted. Bochinsky et al. (2019), using a similar image set,

reported accuracies between 69% and 98%. Cheng et al. (2019)

showed accuracies of between 91% and 98% on a seven-class set

of shadowgraph images collected by the ZOOVIS camera (Bi

et al., 2013). Transfer learning, the use of pre-trained very deep

CNNs has been shown to improve both speed and accuracy when

classifying plankton image sets (Lee et al., 2016; Orenstein and

Beijbom, 2017; Rodriques et al., 2018; Schröder et al., 2018).

As a part of the GulfWatch Alaska programme (gulfwatch.-

com), a long-term monitoring effort in the area impacted by the

Exxon Valdez oil spill, a WETlabs Autonomous Moored Profiler

(AMP) has been deployed in central Prince William Sound annu-

ally since 2013. The AMP site is �5 nautical miles southeast of

Naked Island, in 200 m water depth. The AMP system is a surface

piercing profiler that profiles from a parking depth to surface at a

user-specified rate and interval. Once at the surface, the profiler

connects to a server computer on land via a cellular data link for

data upload and command/control telemetry and then pulls itself

back down the line to the park depth with a small onboard

winch.

In 2015, an in situ zooplankton camera system was developed

for the PWS AMP. The camera system was based on the Scripps

Plankton Camera, but with larger optics and a higher resolution

camera, to sample a larger volume of water to better sample mes-

ozooplankton. The camera system was integrated with the profiler

electronics and deployed on the profiler during deployments in

2016–2018. We present here a description of the camera system

and a CNN-based classification system that was developed using

the images collected during the deployments.

Methods
PWS profiler
The PWS AMP system is based on a WETLabs Thetis profiler,

which consists of a positively buoyant frame (�20 lbs), an electric

winch, and a 2.8-mm UHMWPE tether. Starting from a user-

specified parking depth, the winch pays out the tether at a speci-

fied rate to allow the profiler to ascend. Upon reaching the sur-

face, the profiler enters into a “hold” mode, while an onboard

cellular modem connects to the local cellular network. Upon con-

necting, new profile parameters may be sent to the profiler and a

small amount of decimated data from the profile sent out.

Following that, or if the profiler is unable to connect to the cellu-

lar network before a timeout period (as will occur during heavy

weather), it engages the winch and pulls the frame back down to

the park depth (Figure 1). The system is powered by a 1.5-kW

lithium polymer battery manufactured by Bluefin Robotics for

autonomous underwater vehicle use, and with the current config-

uration it is capable of conducting �70 60-m profiles per charge.

The instrument suite on the AMP includes a Seabird model 19

CTD, a WETLabs FLNTU chlorophyll-a fluorometer/backscatter

turbidometer, a Satlantic SUNA nitrate sensor, and a Seabird

SBE43 oxygen sensor. During the 2016–2018 deployments, the

profiler was set to conduct twice daily profiles from 60 m depth

to the surface. Profiles were usually done within 15 min of the

solar minimum and maximum of each day. The ascent rate was

set to 30 cm s�1.

PWS Plankton Camera
The optical system of the PWS Plankton Camera (PWSPC)

includes a 0.137� 143-mm telecentric lens (Opto Engineering

TC2MHR-96) mounted on a 12-MP colour camera (a Point Grey

Grasshopper GS3-U3-120S6C-C) inside a large pressure housing

with a sapphire glass optical port (Figure 2). Illumination is

provided from a second pressure housing on titanium standoffs

aimed at the imaging system, with a custom white light emitting di-

ode (LED) array focused through condenser lenses (Edmund

Optics 125 mm plano-convex anti-reflective coated lenses) and a

white LED ring ahead of the condenser lenses, to produce darkfield

illumination of the imaged volume (Figure 2). The LEDs are

strobed with a control signal from the camera to synchronize with

the frame rate. The imaged volume of the camera is �450 ml, and

the nominal pixel size is 22.6mm.

The camera takes 12-bit colour images at a maximum frame

rate of 7 frames s�1, which produces more data that can be prac-

tically logged to disk (�500 MB s�1, or �5.5 TB for a 1 month

deployment of twice daily profiles lasting 3 min). However, mes-

ozooplankton are sparse enough that most of each frame does

not contain an image of a particle, it is mostly empty space.

The PWSPC thus also incorporates an onboard computer

(an Odroid XU4) to segment each image and retain regions of
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interests (ROIs) that contain images of individual plankters.

Raw input images were downsampled by a factor of 4 using

nearest-neighbour interpolation and then scaled to 8 bits by di-

viding the pixel values by 256. This approach preserves

resolution in one colour channel and avoids the computation-

ally costly debayering operation on the full 12-MP image. ROIs

in each frame were detected with the Canny algorithm (Canny,

1986), a multi-step algorithm commonly used to detect edges in

surface

60 m

bo�om
(220 m)

anchor
(700lbs)

Float
w/ ADCPs

mooring
line

acous�c
release

AMP

Parked at 60 m
23 hr., 40 min.

Ascending
5 min.

At surface
Transmi�ng data

5 min.

Descending
10 min.

Figure 1. Schematic representation of the PWS profiling mooring and its operation.
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images. High and low thresholds were set at 50 and 100, respec-

tively, and kernel size was 3; those thresholds were empirically

set and gave good detection of objects in sharp focus or with

very high contrast. The edge mask from the Canny operation

was then post-processed with a binary morphological closing oper-

ation (dilation followed by erosion) with a 5 � 5 kernel to bridge

disjoint edges together. Contours were then detected in the image

using the OpenCV findContours function. For each contour with

area larger than a threshold of 300 pixels, the contour bounding

box was padded by a factor of 50% and upsampled to the scale of

the raw image. The coordinates of the padded and upsampled

bounding box were then used to extract the ROI from the raw in-

put image and save it to disk in raw 16-bit TIFF format. An upper

limit of 50 ROIs per image was imposed by hardware limitations

and was not often reached: over the 3 years of deployments, the

mean number of ROIs per image was 7.8, and the 50 ROI limit was

reached only 0.36% of the time. Images were downloaded from the

camera over Gigabit Ethernet during regular service visits to the

profiler done every 4–6 weeks.

The PWSPC was integrated with the AMP electronics, and

control of the camera system done via an RS232 serial link. Prior

to each profile, the AMP control module supplied power to the

camera and waited for the onboard computer to boot. After

the computer had booted, the AMP sent a string to synchronize

the computer clock and an instruction to start logging and then

started the profile. As the profile occurred, the PWSPC computer

output status messages (time, number of ROIs collected, status

messages from the various components) at 1 Hz that were logged

by the AMP electronics. ROIs saved to the onboard disk were

given timestamped filenames to be used to infer the depth of

the profiler at the time each image was taken from the pressure

record recorded by the CTD. Following the profile, the AMP con-

troller shut down the computer and removed power to the cam-

era system before returning to the park depth. During profiling

the camera and strobes were set to operate at 4 Hz to prevent

overlapping images from being taken. The technical specifications

of the PWSPC are outlined in Table 1.

Image preprocessing and CNN classifier
Prior to analysis, 16-bit ROIs were debayered to produce a colour

image at full camera resolution. These colour images were then

Figure 2. Schematic representation of the PWS Plankton Camera.

Table 1. Specifications of the PWS Plankton Camera.

Exposure time (ls) 10–60
Magnification 0.137�
Field of view (mm) 93 � 70
Pixel size (object space) (lm) 22.6
Optical resolution 8 lp/mm at 30% contrast
Depth of field 64 mm at 8 lp/mm at 20%

contrast
Full-resolution imaged volume (ml) 400
Blob detection imaged volume (ml) >1 000
Frame rate 4 frames/s with ROI processing
Onboard storage (GB) 64
Dimensions (excluding cables) 120 cm L � 18 cm OD
Total system weight (kg) �10 (air), �2 (seawater)
Power requirements 9–36 V input, 20 W consumption
External communications RS232, 100 Mbit Ethernet
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contrast-enhanced by subtracting the minimum and dividing by

the maximum of the image. The contrast-enhanced images were

then converted to 8 bits by multiplying by 255 and coercing to

integer values. The full-resolution colour images were then post-

processed using a method similar to the real-time detection

method. The images were first converted to greyscale and then

filtered with a Sobel edge detector. The edge magnitude image

was then thresholded by setting edge magnitudes >2.5 times the

median edge magnitude to 255 and others to 0. The edge image

was then closed using binary morphological operations, and

closed contours are enumerated. The contour with the largest

area was then selected as the foreground object. Finally, the con-

tour mask was smoothed with a Gaussian filter and the mask

multiplied with the colour image. Each colour channel of the

resulting masked image was then deconvolved with the Lucy–

Richardson algorithm with seven iterations and a Gaussian point

spread function estimate with full width half maximum set to

three pixels. The deconvolved colour channels were then com-

bined together to yield the masked, sharpened, colour ROI.

The CNN chosen to classify the PWSPC images was the

“Inception v3” model (Szegedy et al., 2015). Inception v3 is a

very deep CNN with numerous symmetric and asymmetric neu-

rons that has proved to be adept at image classification problems,

and it and its predecessors have consistently ranked highly in the

ImageNet Large Scale Recognition Competition (Russakovsky

et al., 2015). The ImageNet database for the 2015 competition in-

cluded �1.2 million images in 1000 unique categories; the

Inception v3 model had an overall error rate of 5.6%. Because the

model is very large, it can be very time intensive to train from

scratch, but pre-trained weights (such as from the ImageNet

competition) may be used to significantly reduce training time

(Tajbakhsh et al., 2016; Orenstein and Beijbom, 2017). To work

with the Inception v3 model, the shorter dimension of each image

was padded with black values (red-green-blue 0, 0, 0) to make a

square image. Both sides of the image were padded to approxi-

mately centre the image. Images were rescaled to a dimension of

299 � 299 pixels (the default size of the model).

Resizing the images for input to the CNN necessarily discards

size information that is encoded in the image, which can lead to

confusion among similar looking but differently sized plankton.

For instance, Pseudocalanus and Neocalanus copepods have a sim-

ilar appearance but are fairly easily distinguished by size. To rein-

troduce size information to be used to improve classification, a

hybrid architecture was employed, with a second parallel neural

network developed to operate on a small set of features extracted

from each image, including the major and minor axis lengths and

areas in pixels. The first 12 Haralick texture features (Haralick,

1979), a common set of statistics used for image classification

(Hu and Davis, 2005), were also included. The features were

encoded into a single neuron, batch-normalized, and

concatenated with the Inception v3 model prior to the last two

layers to produce a hybrid model (Figure 3). The network was

implemented in Tensorflow (Abadi et al., 2016) through the

Keras front end (Chollet, 2015) in the Python programming lan-

guage. Training of the network and image classification was done

on an NVIDIA Tesla K40 GPU.

CNN training
To produce a training set, images were randomly subsampled

from the entire image set. Because the size frequency distribution

of the images was roughly lognormal (Figure 4), sampling ran-

domly from the entire set produced batches of images that were

mostly smaller particles, which also tended to be of lower resolu-

tion and more difficult to identify. Therefore, the images were

stratified into four logarithmically scaled size groups based on file

size (<1642; >1642, �10 000; >10 000, �28 183, and

>28 183 bytes) before being identified. File size is a useful proxy

of image size, and this subsampling scheme allowed more larger

images to be classified, which were more likely to be identifiable

mesozooplankton. The image set was further stratified by time,

such that approximately one-third of the images were taken from

each of the 3 years, to provide a subsample representative of all

the images.

The amount of training data available is a bottleneck in

the training process of CNNs; for complex classification tasks,

a large training dataset (105 images or more) is desirable. To

streamline the identification of the stratified subsets, a custom

programme was developed in the Matlab GUIDE framework.

The programme consists of a graphical interface that presents an

observer with the image displayed at its actual size alongside a

larger zoomed version and has a text box into which descriptive

text may be entered. Upon entering text and pressing enter, the

identification is recorded and the next image in the set pre-

sented. Using the GUI, each image could be identified in a few

seconds, allowing a large number of images to be identified in a

relatively short time.

The training set was produced by an expert zooplankton

taxonomist, and each image was identified to the finest taxo-

nomic resolution possible. The training set produced contained

18 868 images within 43 separate classes; some classes were

taxon based, while others were based on visual characteristics

(Figure 5, Table 2). A number of rare classes (<10 images) were

identified during manual classification but were not included

for analysis.

The model was initialized with ImageNet weights and was

trained using categorical crossentropy as the loss function and the

Adam optimizer (Kingma and Ba, 2015); accuracy was the pri-

mary metric. The training set was split randomly 90/10 into a

training and test set, and 10% of the training set was used for

validation purposes during training. Image augmentation (Perez

and Wang, 2017) has been shown to improve classification accu-

racy in classification problems with relatively small amounts of

training data and was applied to the images during training.

Images were randomly flipped, scaled (620%), rotated (690�),

or sheared (68�) as they were input into the model during each

training epoch. Network parameters were only retained if they

resulted in an increase in validation accuracy.

Input image

Feature extraction (size, texture)

Figure 3. Schematic representation of the Inception v3 CNN and
concatenated feature size and texture model.
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Figure 5. Examples of non-ambiguous taxa groups among the 43 unique classes identified. Scaling is consistent among different taxa, and the
number corresponds to the taxa group number in Table 2.
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Figure 4. Size frequency histograms of ROI sizes during the 3 years of deployments.
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Results
A total of 2 424 329 ROIs totalling just over 60 GB were collected

during the 2016–2018 deployments (Figure 4).

The Inception v3 model was trained on the training set for 500

epochs and took �275 s per epoch, taking slightly under 40 h.

Training accuracy increased to >90% by the 100th epoch, and

the rate of increase in training accuracy declined after that,

slightly exceeding 98% by the 500th epoch (Figure 6). Validation

accuracy and loss was much more variable, presumably due to

variability in the image set from epoch to epoch but followed the

same trend.

A confusion matrix is a method of representing the accuracy of

the classifier (Pearson, 1904; Hu and Davis, 2005; Luo et al.,

2018); the confusion matrix of the classifier run on the training

data is the theoretical maximum performance that can be

expected from the classifier (Figure 7). Furthermore, there are a

Table 2. Description of the 43 classes in the training set.

Name Number
Number
of images Notes

Acartia 1 100
Aegina 2 147
Aglantha 3 330
Amphipoda 4 100 Merged several amphipod species

to produce larger group
Beroe 5 100
Blob 6 2 989 Characteristic opaque large single

cell. Possibly Noctiluca
Bolinopsis 7 255
Calanus 8 613
Calyptopis 9 198
Chaetognatha 10 212
Clione 11 100
Clytia 12 100
Cnidaria 13 262 Catchall group of several

uncommon species and images
not identifiable to species

Cope_lg 14 815 Catchall group of large copepods
(approximately Calanus/
Metridia sized and larger) not
identifiable to species

Cope_sm 15 1 117 Catchall group of large copepods
(approximately Pseudocalanus
sized and smaller) not
identifiable to species

Ctenophora 16 174 Catchall group of Ctenophora not
identifiable to lobate groups or
Pleurobrachia

Doliolida 17 103
Dot 18 110 Image artefact: small white dots
Eucalanus 19 177
Euphausiid 20 97 Juvenile and larger
Filament 21 656 Long thin forms likely diatom

chains or large pennate
diatoms.

Filaments 22 199 Multiple filaments, often poorly
segmented cnidarian tentacles

Furcilia 23 114 Euphausiid furcilia
Larvacea 24 100 Catchall group for non-identifiable

and not Oikopleura
Limacina 25 210
Metridia 26 1 353
Nauplius 27 256 Nauplii of all types, taxonomically

ambiguous
Neocalanus 28 1 574
Oikopleura 29 207 House usually segmented out
Oithona 30 197
Paraeuchaeta 31 100
Pleurobrachia 32 262
Pluteus 33 308 Primarily echinoderm pluteus

larvae
Polychaeta 34 100 Catchall for all polychaetes not

identifiable as Spionidae
Pseudocalanus 35 1 004
Radiolarian 36 251
Siphonophora 37 204
Snow 38 172 Amorphous aggregates
Spionidae 39 99
Spiral 40 177
Tentacle 41 132 Cnidarian tentacles
Tentacles 42 145 Multiple tentacles in frame.
Unknown 43 2 949
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Figure 6. Training and validation accuracy (top panel) and loss
(bottom panel) over the 500 training epochs.
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number of statistics that maybe be derived to examine the relative

success of the classifier. For each class (i), the number of true pos-

itives (T), false positives, and false negatives, which may be used

to infer the precision, P:

P ¼ Ti= Ti þ FPið Þ:

The recall, R:

Ri ¼ Ti=ðTi þ FNiÞ;

and the F1 score:

F1i ¼ 2PiRi=ðPi þ RiÞ:

The precision indicates the relative success by the classifier,

while recall is a measure of how complete the classifier was; the

F1 score is a relative measure of overall accuracy (van Rijsbergen,

1979; Luo et al., 2018).

When used on the training set, the classifier showed compara-

tively little confusion and generally high scores in the accuracy

metrics with precision exceeding recall (Figure 7; Table 3). The

“unknown” class had the lowest scores, which is unsurprising

since it is by nature a heterogeneous group. A more realistic
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Figure 7. Confusion matrix for the classifier applied to the training data only.
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assessment of the usefulness of the classifier is to test it on a set of

images that it did not see during training (the 10% of images set

aside as a “test” set). Deep neural networks tend to overfit to

the training set, and image augmentation and aggressive use of

dropout layers used in the Inception v3 model are techniques

to reduce that (Yamashita et al., 2018). When the classifier was

applied to the test set, there were considerably more confusion

and lower scores in all of the accuracy metrics (Figure 8; Table 3).

If the overall success of the classifier with the different taxa is

summarized by sorting by the F1 score (Figure 9), some taxa were

resolved quite well, while others were not. Less populated groups

were not less likely to be classified accurately, several of the

smaller classes were classified well (many were visually distinc-

tive), and several larger groups (which were more heterogeneous

visually) had lower success.

The presence of “unknown” (cannot be identified by a human

observer) and novel (not seen before by the network) categories is

problematic for CNNs, since their structure assumes a fixed and

known set of classes. The softmax function used as the final layer

in the Inception model returns scaled outputs that sum to 1 and

may be interpreted as probabilities (Bridle, 1990; Goodfellow

et al., 2016); the prediction made by the classifier is usually

assigned to the category with the highest associated probability.
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Figure 8. Changes in the accuracy metrics (precision, recall, and F1
score) in all of the 43 different classes of the training set as a
function of varying the probability cut-off.

Table 3. Accuracy metrics of the training set (left) and test set
(right) for each class.

Class name

Training set Test set

Precision Recall
F1
score Precision Recall

F1
score

Acartia 1 1 1 0.7 0.88 0.78
Aegina 1 1 1 0.87 1 0.93
Aglantha 1 0.99 1 0.91 0.83 0.87
Amphipoda 1 1 1 0.95 0.86 0.9
Beroe 1 1 1 1 0.83 0.91
Blob 0.98 0.96 0.97 0.85 0.88 0.86
Bolinopsis 1 1 1 0.88 0.76 0.82
Calanus 0.99 0.98 0.99 0.52 0.53 0.52
Calyptopis 1 1 1 0.78 0.94 0.85
Chaetognatha 1 1 1 0.84 0.82 0.83
Clione 1 1 1 1 1 1
Clytia 1 1 1 0.65 0.62 0.63
Cnidaria 1 0.97 0.99 0.25 0.35 0.29
Cope_lg 1 0.98 0.99 0.47 0.54 0.5
Cope_sm 0.99 0.96 0.98 0.51 0.53 0.52
Ctenophora 1 0.99 1 0.14 0.26 0.19
Doliolida 1 1 1 0.62 0.87 0.72
Dot 0.99 0.73 0.84 0.77 0.53 0.63
Eucalanus 1 1 1 0.92 0.97 0.94
Euphausiid 1 0.96 0.98 1 1 1
Filament 1 0.97 0.98 0.79 0.57 0.66
Filaments 1 0.99 0.99 0.7 0.68 0.69
Furcilia 0.97 0.98 0.97 0.78 0.78 0.78
Larvacea 1 0.99 0.99 0.6 0.6 0.6
Limacina 1 0.98 0.99 0.74 0.74 0.74
Metridia 0.99 1 0.99 0.89 0.84 0.87
Nauplius 1 0.96 0.98 0.88 0.77 0.82
Neocalanus 0.99 1 0.99 0.72 0.81 0.77
Oikopleura 1 0.97 0.99 0.76 0.71 0.74
Oithona 1 0.98 0.99 0.6 0.55 0.57
Paraeuchaeta 1 1 1 0.9 0.9 0.9
Pleurobrachia 1 0.99 1 0.74 0.72 0.73
Pluteus 1 1 1 0.97 0.9 0.93
Polychaeta 1 0.93 0.96 0.8 0.43 0.56
Pseudocalanus 1 1 1 0.7 0.69 0.69
Radiolarian 1 1 1 0.94 0.98 0.96
Siphonophora 1 0.99 0.99 0.71 0.78 0.74
Snow 1 0.95 0.98 0.63 0.79 0.7
Spionidae 1 0.95 0.98 0.85 0.81 0.83
Spiral 1 0.96 0.98 0.92 0.57 0.7
Tentacle 0.99 0.99 0.99 0.89 0.71 0.79
Tentacles 1 1 1 0.86 0.93 0.89
Unknown 0.91 0.98 0.95 0.68 0.7 0.69
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The associated probability may also be used as a threshold to re-

duce the amount of misclassification and new groups that have

not been encountered by the model before (Hendrycks and

Gimpel, 2018). The technique has been used successfully with

plankton images (Faillettaz et al., 2016; Luo et al., 2018).

To examine how a probability threshold might improve

classification accuracy, the accuracy statistics were recalculated

at varying probability thresholds (i.e. if the prediction for a par-

ticular image did not exceed the threshold it was not included in

the calculation). Applying this procedure to all classes in the

train and test sets (Figures 8 and 10, respectively) produced

“trajectories” for each class that generally showed that a more re-

strictive probability threshold resulted in improvements in

classification accuracy. The three taxa with the lowest F1 scores in

the test set (Figure 9) showed an opposite trend, with a decrease

in accuracy metrics at higher probability thresholds. Those

classes were among the more ambiguous ones (“Ctenophora”,

“Cnidaria”, “Calanus”) that exhibited high confusion with other

classes with similar or even overlapping appearance (e.g.

“Calanus” and “Cope-lg”; see Figure 11). Because those classes

were employed when the human observer had low confidence of

the identification, it is perhaps unsurprising that the confidence

of the machine classifier remained low as well. A trade-off to this

technique is that as higher probabilities are used, more images are

discarded from the analysis (Figure 12). If a 90% threshold is

used, the overall error rate drops from �30% to �10%, but ap-

proximately a fifth of the images are discarded. A 95% threshold

results in �25% of images being discarded. Applying a 90% prob-

ability threshold resulted in an increase in most accuracy statistics

in most classes (Figure 13, Table 4).

Discussion
The camera system developed here is among the highest resolu-

tion in situ zooplankton camera systems deployed thus far, with a

comparatively large sampled volume as well (Table 5). It is also

among the first colour imagers deployed, joining the Video

Plankton Recorder (Davis et al., 1992; Lombard et al., 2019) and

CPICS (Continuous Particle Imaging and Classification System:

Grossmann et al., 2015). Given that the system was designed for

battery-limited autonomous vertical profiling (as opposed to

long tows), a relatively large sampling volume was desirable, to

capture adequate numbers of relatively dilute mesozooplankton

(Sheldon and Parsons, 1967) during each profile. Colour infor-

mation is also useful, because it may be diagnostic of some plank-

ton classes (e.g. red pigments are common in some copepod
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Figure 9. F1 scores for each of the 43 different classes in the test set.
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species), and features of the plankters are also discernable in

some images (e.g. full guts and lipid sacs in copepods).

The image set collected during the 2016–2018 deployments

spanned large phytoplankton to large mesozooplankton and

exhibited a diversity of taxa, orientations, and qualities. Although

magnification is constant across the depth of field with a telecen-

tric lens, they do not have an infinite depth of field and particles

on either side of the depth of field will be less sharp than those in

the centre. Scattering by small particulates (phytoplankton cells

too small to resolve and inorganic particles) may also have re-

duced the practical resolution at times. Not all images were sharp

enough to detect the features required to identify a plankter to a

fine taxonomic level. Larger raw images obviously had more fea-

tures (sensu Hassaballah and Awad, 2016) that were more useful

to a human observer and presumably to a machine observer as

well; smaller raw images, when upsized to 299 � 299 pixels for

classification, remained less sharp.

Identification of taxa from images is a difficult task, and

the error rate of human observers can be significant. In a dino-

flagellate classification task, Culverhouse et al. (2003) found

that expert taxonomists achieved 84–95% accuracy at best,

although accuracy dropped considerably among multiple

observers (43%). Similar studies in other fields have shown

lower ranges in more visually complex situations (69–96%:

Austen et al., 2017). The proportion of unknown images can

also vary among observers and can depend on the number of

classes involved (Cowen et al., 2015). Luo et al. (2018) suggest

that 90% accuracy be used as a benchmark for automated clas-

sification. Those levels of accuracy were possible with the

Inception v3 CNN for a number of taxa, particularly if images

with lower confidence were not used.

Filtering images by probability, as suggested by Faillettaz et al.

(2016), improved precision and recall in most taxa by 5–10%.

Examination of the confusion matrix post filtering (Figure 13)

shows that much of the confusion was between related classes, for

instance the large calanoid copepods Metridia, Calanus,

Neocalanus, and the catchall group Cope_lg and the small cope-

pod classes Oithona, Pseudocalanus, and the catchall group

Cope_sm. There was also confusion among the classes represent-

ing gelatinous forms, both cnidarians and ctenophores. The

catchall groups Cnidarian and Ctenophora were not well re-

solved, while individual taxa within those groups (e.g. the cteno-

phore groups Bolinopsis, Beroe, and Pleurobrachia) were well

classified. The catchall groups may have thus likely represented

lower quality images (to both human and machine observers)

that were more visually heterogeneous and possessed fewer useful

features for identification.

Large, very deep CNNs benefit from large training sets

(e.g. Cho et al., 2016), and the training set used here is small

compared with those used in contemporary machine vision re-

search like ImageNet. It is however of similar size to several

training sets used in plankton identification studies (order of

hundreds to thousands of images per class: Hu and Davis, 2005;

Bi et al., 2015; Faillettaz et al., 2016). The roughly lognormal

size distribution of plankton populations makes finding less

common taxa problematic. The size stratified technique used

here attempted to balance the need to obtain examples of as

many classes as possible, while not missing out on more rare

forms. The classifier developed here discriminated several com-

paratively rare (and visually distinctive) taxa with high accuracy.

An iterative process where the results of the classifier are

checked and added to the training set will aid in producing

a larger training set, but that does however leave open the possi-

bility of an unknown bias being introduced to the network

(i.e. the network probably classifies some images better than

other and will bias towards those images). Examination of the

unknown class and those removed by probability filtering will

also be instructive, though in the case of the latter would

involve looking through a very large image set (105 images in

the case of the PWS image set so far) and would likely need to

be subsampled. Training set size will continue to be problematic

for plankton studies using imagery, every plankton imager

has different optical characteristics, resolution, and lighting,

which makes each image set different and not directly compara-

ble. Presently, there are several large plankton training image
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Figure 10. Changes in the accuracy metrics (precision, recall, and F1
score) in all of the 43 different classes in the test set as a function of
varying the probability cut-off.
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sets available (Cowen et al., 2015; Orenstein et al., 2015) and,

transfer learning, the use of networks pre-trained on other

image sets has shown to improve the speed and accuracy of

results (Orenstein and Beijbom, 2017; Rodrigues et al., 2018;

ICES, 2020).

There is no panacea when approaching the problem of under-

standing zooplankton dynamics. Zooplankton are dilute, and a

large volume of water must be sampled to obtain representative

estimates of abundance. Plankton nets sample a large volume of

water and allow fine scale taxonomic resolution but are expensive

in terms of time and money and damage fragile taxa. Cameras

sample a smaller volume of water and provide less taxonomic in-

formation but are inexpensive to operate following the initial cap-

ital outlay. Obtaining twice daily profiles over several months is

simply not tractable with nets (Huntley and Lopez, 1992) but is

with a camera. The classifier developed here permits high confi-

dence the discrimination of several species-level and more

broadly based groups.
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Figure 11. Confusion matrix for the classifier applied to the test set (i.e. images that the classifier did not experience while training).
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probability cut-off was varied in the test set.
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The value and usefulness of automatically classified imagery

depends on the questions at hand. Simple information from zoo-

plankton imagery such as abundance and size is easily determined

with high confidence. For example, although there was some con-

fusion between copepod species and the generalized copepod

group, but if one is primarily interested in the abundance and rel-

ative biomass of copepods, that information may be determined

with high confidence. Done over several years, estimates of zoo-

plankton biomass could be of value to fisheries and ecosystem

managers (e.g. Möllmann et al., 2014). If there is interest in a sin-

gle species, then more work may be required with the classified

images to assure confidence but more inferential questions may

be addressed.
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Figure 13. Confusion matrix for the classifier when applied to the test set and using a 90% probability threshold to discard uncertain
classifications.
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Table 4. Accuracy metrics for each class in the test set, when a 90% probability threshold was applied.

Class name Precision Recall F1 score

Acartia 0.82 1 0.9
Aegina 0.92 1 0.96
Aglantha 0.93 0.86 0.9
Amphipoda 1 0.86 0.93
Beroe 1 0.83 0.91
Blob 0.91 0.92 0.92
Bolinopsis 0.91 0.78 0.84
Calanus 0.59 0.64 0.61
Calyptopis 0.93 0.97 0.95
Chaetognatha 0.92 0.9 0.91
Clione 1 1 1
Clytia 0.68 0.76 0.72
Cnidaria 0.26 0.41 0.32
Cope_lg 0.53 0.62 0.57
Cope_sm 0.58 0.63 0.6
Ctenophora 0.2 0.36 0.26
Doliolida 0.79 0.92 0.85
Dot 0.87 0.65 0.74
Eucalanus 1 0.97 0.98
Euphausiid 1 1 1
Filament 0.87 0.69 0.77
Filaments 0.71 0.73 0.72
Furcilia 0.92 0.86 0.89
Larvacea 0.86 0.75 0.8
Limacina 0.84 0.86 0.85
Metridia 0.95 0.87 0.91
Nauplius 0.96 0.92 0.94
Neocalanus 0.79 0.85 0.81
Oikopleura 0.88 0.75 0.81
Oithona 0.69 0.62 0.65
Paraeuchaeta 0.95 0.9 0.92
Pleurobrachia 0.83 0.81 0.82
Pluteus 0.98 0.95 0.97
Polychaeta 0.93 0.61 0.74
Pseudocalanus 0.8 0.78 0.79
Radiolarian 0.96 0.98 0.97
Siphonophora 0.84 0.87 0.85
Snow 0.68 0.83 0.75
Spionidae 0.88 0.88 0.88
Spiral 0.97 0.71 0.82
Tentacle 0.96 0.81 0.88
Tentacles 0.89 1 0.94
Unknown 0.77 0.79 0.78

Table 5. Comparison of the imaging specifications of published plankton imagers designed for zooplankton.

System Imager resolution Pixel resolution
Sampled
volume Illumination References

CPICS 1 360 � 1 024 30 mm to 20 mm 1 ml Darkfield Grossmann et al. (2015)
VPR Varies 30 mm to 5 cm 1.25–380 ml Darkfield Davis et al. (1992),

Lombard et al. (2019)
ZOOVIS 2 448 � 2 050 10 mm 240 ml Shadowgraph Bi et al. (2013, 2015)
UVP 1 280 � 1 024 174 mm 1 020 ml Light sheet Picheral et al. (2010)
ISIIS 2 048 � 17 frames per second (line scan) 68 mm (in vertical) 169 l s�1 Shadowgraph Cowen and Guigand

(2008)
Zoocam 1 280 � 960 40 mm 250 ml Shadowgraph Ohman et al. (2019)
PWSPC 4 240 � 2 824 22.6 mm 450 ml Darkfield This project

The Prince William Sound Plankton Camera 1453
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